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The problem of heat transfer (or mass transfer a t  low transfer rates) to a strip of 
finite length in a uniform shear flow is considered. For smsll values of tjhe PBclet 
number (based on wall shear rate and strip length), diffusion in the flow direction 
cannot be neglected as in the classical Leveque solution. The mathematical problem 
is solved by the method of matched asymptotic expansions and expressions for the 
local and overall dimensionless heat-transfer rate from the strip are found. Experi- 
mental data on wall mass-transfer rates in a tube a t  small PBcIet numbers have been 
obtained by the well-known limiting-current method using potassium ferrocyanide 
and potassium ferricyanide in sodium hydroxide solution. The Schmidt nuinber is 
large, so that a uniform shear flow can be assumed near the wall. Experimental 
results are compared with our theoretical predictions and the work of others, and 
the agreement is found to be excellent. 

1. Introduction 
Measurement of the heat transfer from an isothermal strip placed on an otherwise 

insulated wall in a uniform shear flow has been a useful indirect technique for estimating 
the velocity gradient a t  the wall. This method is based on the well-known thermal 
boundary-layer solution of Leveque (1928), which is valid when the PBclet number 
Pe is large and axial diffusion is negligible. Recently it has been found desirable to 
consider heat transfer from extremely small elements, such as the probes used in 
monitoring blood flow in arteries. I n  these cases the strip is so narrow that axial 
diffusion cannot be ignored, and in fact, the heat transfer is completely dominated 
by edge effects. It is this problem that is considered in this paper. The analogous mass- 
transfer problem, a t  low mass-transfer rates, is ident,ical to the heat-transfer problem 
and our work can also be applied to this case. 

The first attempt to account for the leading- and trailing-edge effects for a small 
strip, where axial diffusion is important, is due to Ling (1963), who considered a steady 
shear flow with a linear velocity profile. Ling divided the transfer surface into three 
regions: ( 1 )  a leading-edge zone where axial diffusion must be included, (2) a central 
zone where axial diffusion is negligible and the Leveque solution is valid and (3) a 
trailing-edge zone where axial diffusion is again important. Ling obtained the solutions 
in zones 1 and 3 using numerical integration and found that if Pe > 5000 the entire 
surface could be assumed to  be in zone 2 for the purpose of calculating the overall 
heat transfer from the surface, i.e. the edges had a negligible effect. 

Springer & Pedley (1973) and Springer (1974) considered the leading- and trailing- 
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edge regions of a semi-infinite flat plate separately in an effort to isolate the edge 
effects. I n  both cases the Leveqne solution was assumed either downstream of the 
leading edge or upstream of the trailing edge and the IViener-Hopf technique was 
used to obtain analytical solutions. By integrating the heat flax over a section of the 
thermal wake, Springer obtained an estimate of the variation of the Nusselt number 
S u  with Pef. In addition he found that for the boundary-layer solution to be valid 
anywhere on the plate i t  was necessary to have Pe > 22. Popov (1975) considered the 
same problem as  Springer & Pedley (1973) for the heat transfer from a leading edge, 
and obtained similar results. 

Xewman (1 973) ,  apparently unaware of Ling's work, also carried out numerical 
integrations in the leading- and trailing-edge regions. The numerical results he obtained 
for the coefficients of the square-root singularit'ies in the local flux a t  the leading and 
trailing edges can be compared directly with Springer & Pedley's coefficient for the 
leading edge anti Springer's coefficient for the trailing edge, which he tabulated us. 
Ped .t The leading-edge coefficients agree to two decimal places and the trailing-edge 
coefficients differ by less than 4 yo when Pe 3 25,  which is about the smallest value 
for which Springer's results are reliable. Newman (1973) combined his analytical and 
numerical results to obtain an equation relating Nu and Pe (equation (361) of his 
paper) with an error term O(Pe-?). 

The mathematical formulation of our problem is given in $ 2  and the first-order 
solutions in the inner and outer expansions are obtained. In $ 3  the second-order 
outer solution is found using a Fourier transform technique, and the asymptotic 
behaviour of this solution is determined. The matching of the first-order terms leads 
to a gauge function which is proportioiial to (In Pe +constant)-', but unlike the Stokes 
flow past a cylinder, convective terms do enter the inner expansion. The first three 
terms and the eigenfunctions of the inner expansion are obtained in $ 4, and in 3 5 
an  extensive matching procedure is carried out which helps to determine the third- 
order solntion in the outer expansion. An inconsistency in the matching forces the 
introduction of an additional term in both the inner and the outer expansion, which 
changes the heat flux. I n  $ 6  the heat flux from the strip is found; if, however, the heat 
flux is specified, as for a heated element, the temperature of the strip can be predicted. 
The temperature distribution far downstream in the wake is determined in $ 7.  

Since we were unaware of any experimentalresults forwhich Pe < 5 ,  i t  was desirable 
to verify the theoretical predictions experimentally. The experimental apparatus and 
technique are described in $ 8, and experimental data for small Pe are compared with 
our theoretical results in S 9. 

2. Mathematical formulation 
We consider steady uniform shear flow past a heated (or cooled) isotherma.1 strip of 

length L which is embedded in an insulated wall and maintained a t  a constant tempera- 
ture To (see figure 1 ) .  At large distances from the strip the fluid temperahre is fixed 
a t  T,. Denoting dimensional variables with bars, we introduce the following non- 
dimensional variables: 

s = F / ( 4 L ) ,  = y / (&L) ,  T = (T-!P')/(Tm-To). (2.1) 
t Some care is required in making this comparison owing to n factor of 2 n.11ich appears in 

Xewnan's  lion-din~c~lsionalization and Peclet niunhcr. 
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FIGURE 1. Flow geometry. 

The governing convection-diffusion equation for a fluid of constant properties may 
be written as 

where V2 is the Laplacian with respect to  (x,y). The small parameter e = SL2/4~ ,  
where Kis the thermal diffusivity, S is the constant shear rate a t  the wall and the PBclet 
number, based on the strip length, is given by Pe = 4 ~ .  The boundary conditions 

( 2 . 3 )  
require T = 0 for y = 0, 1x1 < 1, 

aT/8y = 0 for y = 0, 1.1-1 > 1, (2.4) 

T - t l  for ( x 2 + y 2 ) b c o .  (2 .5 )  

EYaiilax = V ~ T  (-a < IL: < Go, y 2 0; o < << I ) ,  ( 2 . 2 )  

Our objective is to find uniformly valid asymptotic solutions for E +  0 by the method 
of matched asymptotic expansions. 

First-order inner solution 

If we formally put 8 = 0 in (2.2) and assume 

T(x,  Y) - ds) 4l(r, Y), 
where g ( E )  is a gauge function to  be determined, we obtain 

V2t, = 0. ( 2 . 6 )  

A solution of (2.6) subject to  the boundary conditions ( 2 . 3 ) - ( 2 . 5 )  does not exist. The 
explanation of this paradox is that when viewed from large distances the strip must, 
appear to be a point sink,t and solutions of Laplace's equation with this Characteristic 
must exhibit a logarithmic divergence for r = ( x 2 t  y2)1-+oo. A solution of (2.6) with 
this property which satisfies ( 2 . 3 )  and (2.4) and has integrable flux singularities a t  
the edges, i.e. iL M!4dxl (2.7) 

t In tlie non-dimensional formulation (2.2)-(2.5),  heat i n  flowing touards the  strip from 
infitiity. 
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where 9 is an O( 1)  length of strip including a single end point, is given by 
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t,(z, y) = Re In [z  + ( 2 2 -  l)kJ, (2.8) 

where x = .r + iy and the function (z2 - 1 ) h  is regular in the z plane, which has been 
cut along the strip y = 0, 1x1 < 1. The principal value of the logarithm is to be taken. 

We note t,hat any dcrivative of the form ant,/8zn (n  = 1 , 2 , 3 ,  ...) satisfies (2.6), 
(2.3) and (2.4) and vanishes for r-+co. These solutions which satisfy homogeneous 
boundary conditions might be considered as eigenfunctions for the inner expansion. 
However, they do not satisfy (2.7), and infinite (non-integrable) heat-ff ux singdarities 
exist a t  each end point. Appropriate eigenfunctions for the inner expansion will be 
introduced later. 

Since (3.8) does not satisfy the boundary condition st infinity, an outer solution, 
valid for r - f o o ,  is required. 

Formulation of Jirst- and second-order outer problems 

I n  the outer region where r $ 1 it is convenient to consider the limit 6 + 0 to be a 
result of letting L -+ 0. Since an infinit,esimal strip with finite heat flux cannot be ex- 
pected to alter the temperature a t  infinity, the first-order outer solution, satisfying 
(2.2) and (2.5),  is simply 

T ( X ,  Y )  = 1 )  

where X and I' are outer variables defined by 

X = €ax, Y = €4J) (2.9) 

and a, /3 > 0 are constants which will now be determined. 
If the change of variable (2.9) is introduced into (2.2),  there are several possible 

choices of a and /3 which lead to different partial differential equations. However, the 
particular choice a = /3 = + leads to a distinguished limit for which the governing 
equation is the same as (2.3) with e = 1 ,  i.e. 

Y aT/aX = V2T, (2.10) 

where now the Laplacian is with respect to (X, Y ) .  Although the equation is not 
simplified in the outer region, there is a significant change in the boundary conditions 
because the strip now appears as a point sink located a t  the origin R = (X2 + Y2)i = 0; 
therefore it will be necessary to satisfy only matching conditions for R-t 0 rather 
than the exact boundary condition (2.3). 

To obtain the second approximation we write 

T 1 +f (8) TIW, Y ) ,  (2.11) 

iicre the gauge function f ( E )  will be determined by the matching procedure. Sub- 
stituting (2.1 1 )  into (2.10), we obtain (2.10) with T replaced by TI. 

Boundary conditions 

The boundary conditions (2.4) and (2.5) will be satisfied provided that 

8Tl/8Y= 0 for Y = 0, 1x1 > 0 

and Tl-+c) for R = (X2+  Y 2 ) * + ~ .  

(2.12) 

(2.13) 



Hetct/?tiass trmsfer  uct s t d l  YCclet ?t,uniOers 53 

At the origin the sink condition requires 

Tl - (Icln) In R for R-t 0. (2.14) 

The half-sink strength k can be absorbed into the gauge function f ( e )  and will be 
determined later. 

The singularity condition (2.14) holds on the boundary of the domain and it is 
convenient to  combine (2.12) and (2.14) into a single condition along Y = O f  by 
applying the divergence theorem to (2.10) over the area of a thin rectangle specified 
as follows: the lower edge coincides with the S axis but is indented above the origin 
R = 0 via a small semicircle of radius d, the side parallel to  this is a t  a distance 
Y = S > d > 0 and the other pair of parallel sides are a t  S = k M .  Using (2.12) and 
(2.14) and assuming that the contributions from the integrals along X = ~f: 41 vanish 
when ~W-- too  and 6-t O,-f we recover after letting S - t  O 

(2.15) 

Conditions (2.12) and (2.14) will now be satisfied by taking 

[aTl/aY]I’=O+ = k S ( X )  ( -00  < x < a), (2.16) 

which is consistent with (2.15). 

3. Determination of T,(X, Y) 

and its inverse, i.e. 
To solve (2.10) subject to (3.13) and (3.16), we introduce the Fourier transform 

After taking the transform of (2.10) and letting 

s = e - tn ia f (  I’+ ia), 
we obtain Airy’s equation 

The solution of (3.3) which satisfies (2.13) is given by 

d2@/ds’ -S@ = 0. 

$(s, Y)  = H ( a )  Ai ( s )  (3.4) 

provided that larg sI < in, which requires -in < arga < 4.. Therefore a branch cut 
must be introduced along the negative imaginary axis in the ct plane. 

To determine H ( a )  we t’ake the transform of (2.16) and use (3.4); thus 

H(a)  = k e t  ni/ctg Ai‘ (so), ( 3 . 5 )  

where so = sII-, 
argument. Using the inversion integral, we find 

= einia* and the prime denotes different,iation with respect to the 

t These conditions rnn he verifird n posteriori 
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upper half-plane. The function Ai' (so) has simple zeros when a = ipi, where 
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For X < 0 we evaluate (3.6) by considering a contour integral which is closed in the 

Ail(-p,)=O ( p n > O , n =  1 , 2 , 3  ,... ). 

Using the calculus of residues we find 

For X > 0 we consider a contour integral in the lower half-plane which embraces 
the branch line along the negative imaginary axis. After some aIgebra we obtain 

Asymptotic expansion for R -+ 0 

To carry out the matching we require an asymptotic expansion of T,(S, Y) for R + 0. 
It is sufficient (and convenient) to use the solution (3.8), valid for X 2 0, for this 
purpose. Since the integral in (3.8) and its X and Y derivatives are marginally con- 
vergent when X, Y+O, some careful manipulations are required to extract the 
required information. We rewrite (3.8) in the following way: 

le-+ni& 
7 l  ( )e-'xdr so r4Ai' (so) 
-T , (X ,  Y) = Re 
k 

where now s = e-++(Y+r), so = sly,o,  Z =  X - i y ,  

P ( Y )  = -)(Y+iiY3), 

G(Y)  = t ( - i+#Y2+&iY4-&Y6) ,  

and E,(u) is the exponential integral, defined by 

The infinite integral in (3.9) and its first and second partial derivatives with respect to 
X and Y are now uniformly convergent for X, Y > 0. The functions a( 1') and G( Y) 
are determined from the asymptotic expansion of Ai (s)/Ai' (so) for r - f m .  When (3.9) 
is evaluated for R -+ 0 we find 

(n /k)T,  N lnR+ao+a,X+a2 Y-i(X2- Y2)O+a3X2+a,X'Y+a, Y2+  ...,'f 

(3.10) 

t The asymmetric term (Xz - Y2) 0 is not harmonic and is a direct result of convection, 
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a2 = 0, a3 = &n, a, = &, a, = --An 32 

and 0 = tan-'( Y / X )  is in the range 0 < 8 d n. In  obtaining a,, a,, u3 and a5 from 
(3.9) it  is necessary to evaluate integrals along an infinite ray with argument ( - in) 
which are displaced to the positive real axis using contour integration. The details 
of these calculations are not trivial but they are too lengthy to reproduce here. 

First-order matching 

Expanding the first-order inner solution (2.8) for IzI +a, we obtain 

T = g(s) [lnr+ln2+O(r-2)]. (3.11) 

Using (2.9) and (3.10) we consider the limit R-tO of the two-term outer expansion 
(2.11)) and express the result in terms of the inner variables, i.e. 

T = l+(k/n)f(s) [lns~+lnr+a,+O(e*)]. (3.12) 

By choosing g ( 4  = ( k / n ) f ( 4  = [In (2/€3) - aol-'9 (3.13) 

the terms displayed in (3.11) and (3.12) will be matched with ah error O(e tg (6 ) ) .  The 
neglected terms will be matched when higher-order terms in. the inner and outer 
expansion are considered. 

4. The inner expansion 

T(x,?/) = g ( E ) ( t o ( X , Y ) + E ) t i ( S , y ) + € t , ( z , ? / )  +eg(e)tz(r,y) +o[Eg(e)I), (4.1) 
form : 

where g(s) is given by (3.13) and to(x, y)  by (2.8).  We might expect that an asymptotic 
sequence of the form {g(s)}n (n = 1 , 2 , 3 ,  . ..) would be required in this problem on the 
basis of the resolution of the Stokes paradox for the two-dimensional low Reynolds 
number flow past a circular cylinder given by Kaplun (1957) and Proudman & 
Pearson (1957). The critical difference there is the nonlinearity of the Navier-Stokes 
equation, which compounds the inverse powers of the logarithm; thus the convection 
terms which are O ( E )  will not enter that asymptotic expansion until all the inverse 
powers of the logarithms have been disposed of. In  our problem the convective terms 
enter the inner expansion at  the third order owing to the linearity of the governing 
equations. 

The term t,(x, y) 

The term O ( X )  in (3.10) requires that a term O ( s f g ( E ) )  should appear in the inner 
expansion for the matching to be carried out successfully. By substituting (4.1) into 
(2.2) we find 

and t, must satisfy the boundary conditions (2.3) and (2.4) and asymptote to a,x 
for r + m. 

t These constants were determined by numerical integration. 

We shall assume and verify a posteriori that the inner expansion has the following 

VZt, = 0) (4.2) 
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Inner eigenfunctions 

There exists a set of harmonic functions which satisfy ( 2 . 3 ) ,  (2.4) and (2.7) and which 
grow algebraically for r+m. These functions are given by any real multiple of the 
functions 

e,(z,y) = R e ( [ z + ( z 2 - l ) ~ ] n - [ z + ( z 2 - l ) ~ ] - n }  (n = 1 , 2 , 3 ,  ...), (4.3) 

where the branch of (9 - l)a is defined as before. The solution for t, corresponds to 
the case n = 1 uncl the matching determines the multiplicative constant. For now we 

(4.4) 
write 

and C, will be determined later. 
t l k  Y) = c, el@, y), 

(4.5) 

To find a particular solution tZ1, we formally introduce new independent variables 
2 = x + iy  and Z = IC - iy. When (4.5) is transformed in this way we find 

a't,,/Lk& = (16i)-' (Z - X) [ ( z 2  - 1)-& + (Z2 - l ) - k ] ,  (4.6) 

where (2.8) has been used to  evaluate the right-hand side. A straightforward integra- 
bion yields 

(4.7) 

We now determine a harmonic function t,, which assumes the value [ -  at,,/&^],,^ 
for 1x1 > 1 on y = 0. This function is readily found to be 

tz2(r, y) = - & Im { (22  + 1) In [ z  + (22 - 1)4]  - z(z2 - 1 )3}. (4.8) 

Finally, to satisfy (2.3) we require another harmonic function t,, which takes on the 
values 

t,&, 0) = - 4 1 ( x ,  0) - b2(.7,0)  

= - ~ z { 3 x ( 1 - ~ 2 ) ~ - ( 2 ~ 2 + l ) t a n - 1 [ ( 1 - z 2 ) ~ / x ] }  for 1x1 < 1, (4.9) 

(4.10) 

and ]tz31 < co for r+m, (4.11) 

where the inverse tangent in (4.9) is chosen in the range [0,77]. 

semi-infinite strip in the < plane shown in figure 2. The required transformation is 
This potential problem may be solved by mapping the upper half-plane into a 

z = sin(&n<) (5  = c + i y )  
and the problem becomes 

(4.12) 
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FIGURE 2 .  The 6 plane. 

where ' 7 '2  is the Laplacian with respect t o  (5,y). The solution is obtained by use of 
Fourier series and is given by 

where B, = [(an- 1) (2n+ 1 )  (27~+3) ] -~ .  
The solution for t ,  can now be written as 

t 2 ( x ,  9 )  = t21(x3 y) + t 2 2 ( x )  y) + t 2 3 ( x )  y) + c2 e 2 ( x )  y)) (4.18) 

where the multiple of the eigenfunction C2 will be determined by the matching. Note 
that only a multiple of e2 is required a t  this stage to match the quadratic terms which 
appear in (3.10). 

5. Detailed matching procedure and higher-order terms in the outer 
expansion 

express the result in terms of the outer variables using (2.9); thus 
We now apply the limit r+m to the first three terms of the inner expansion and 

T = g ( ~ ) { I n 2 R - l n d + 2 C ~ X + 4 C ~ ( X 2 -  I '2 )+a4X-Y- i (X2-  Y 2 ) 8  
+ &z[ - R-2 cos 20 - 4C1 R-I cos 8 - $8 + $sin 20 - Q sin 30 cos 28 - SC, 

+ a m 1  + o ( 4 .  (5.1) 

It should be noted that, although t,, = &n + O(e-:n'') when y JCO, we do not obtain 
exponential decay in the z plane. I n  fact, t,, = &r+O(r-l) but this does not alter 
the results above until terms O ( d )  are included in the curly brackets. 

We now take the limit R-tO ofthe two-term outer expansion (2.11), i.e. 

T = g(e )  {In 2R -In €4 +al X + a,(X2 - Y 2 )  + a4 X Y - Q(X2  - Y2) 8 + O(cubic terms)}. 

( 5 . 2 )  
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The neglected cubic terms in (5 .2 )  will have to be matched to terms O[Qg(s)]  in the 
inner expansion. It can now be seen that all terms O[g(e)] will be matched in (5.1) and 
(5.2) provided that we choose the multiples of the eigenfunctions such that 

c, = iu,, c, = )a3. (5.3) 

The remaining terms in (5.1), which are O[eg(e)],  can now be used to deduce the 
forms of the third and fourth terms in the outer expansion. 

Eigenfuncfions for the outer expansion 

We observe that the functions 
h,,(S, I') = anT,/aX" (5.4) 

satisfy (2.10), (2.12) and (2.13) and behave like P( ln  R)/aS?l for R+O. These are the 
eigenfunctions of the outer expansion. For n = 1,2,  the behaviour at  the origin is 

a case a2 cos 20 given by 
-1nR = - ax R 9 ax2 R2 ' 

When these terms are compared with the first two terms in the square brackets of (5.1)) 
it is readily inferred that the outer expansion should contain the terms 

-1nR = -- 

aeg(€) (a2T1/as2-- 2a1 BT,/BS). (5.5) 

If these additional ternis in the outer expansion are evaluated for R + 0 ,  we find that 
all of the terms in the square brackets of (5.1) will be matched except for the constant 
terms, which must obey the equation 

1 

- 8C2 + $. - 2a3 + 4. = 2a3 - 2 4 ,  

7~ = - 1 6 ~ ;  < 0, or if equaliby holds, 

which is clearly impossible. This inconsistency is resolved by introducing the fourth- 
order berm in t'he outer expansion 

47(c)I2T1(X, Y )  (5.7) 

and the f0urt.h-order term in the inner expansion 

B W e ) l 2 t , ( r ,  Y), 
where A and B are constants. When r+m, the new term given by (5 .8 )  introduces 
a constmt, term O[eg(c)] in the expansion (5.1). By choosing A and B appropriately 
t,he inconsistency (5.6) can be removed, and the new heat flux established by the 
logarithmic divergence of to in (5.8) will just match the logarithmic singularity of T, 
in (5.7) a t  the origin. Aft,er some algebra we find 

A = B = - (a3 + +a;). 

The introduction of these new terms will not affect any terms which have already been 
matched. The outer expansion can now be written as 

T = i + g(e) {T,(s, Y )  + ts(av,/ax2 - 2a1 a q / a s )  -eg(e) (a3 + ;a;) T,(x, Y )  + o[eg(e)l), 

(5.9) 

(5.10) 

and for t'he inner expansion (4.1) 

t 3 k ,  9 )  = - (a3 + $4) t O b - 7  Y). 
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FIGURE 3. Theoretical local heat-transfer rate Nu, V S .  T for various values of P e .  

6. Heat flux from the plate 

number and is given by 
The absolute value of the local non-dimensional heat flux q(x) is a local Nusselt 

NU, = [H' /ay], ,o = (1 - x2)-4 g ( ~ )  (1 + d al(x) + eaz(z) + E g ( E )  a3 + ~ [ ~ g ( f i ) ] } ,  (6.1) 

wherea,(x) = a,x, a3 = -(u3++a2,) = -0.1853.. . ,  

8 "  
a2(x) = u 3 ( l - 2 x 2 ) + -  C (-l)n(2n+1)Bnsin[(2n+l)sin-lx] 

n=O 

and Isin-' X I  < &r. In  obtaining az(x)  it is necessary to use the transformation 

The function (1 -x2)f Nu,  is displayed in figure 3 for several values of Pe = 4e. We 
should note that, although the factor (1 - 9 ) t  is symmetric about x = 0, the function 
(1  - x2)*Nuz is skewed, with larger values towards x = - 1. This asymmetry is a result 
of the heat transfer from the front of the strip, which effectively reduces the tem- 
perature gradient available for heat transfer to the rear portion. 
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The integrated non-dimensional heat flux from the strip, i.e. the overall Nusselt 
number, results from only the first and fourth terms in the curly brackets of (6.1).  
These terms arise from the multiples of tn(x, y) in the inner expansion. We find 

NU, = NU, dx = ng(e)  { 1 + a3 eg(e) + o [ E ~ ( E ) ] } .  (6.2) sI1 
The one- and two-term results are shown vs. P e t  in figure 6 (see 5 9), and the transition 
from small P e  to large P e  is surprisingly smooth. We have also displayed Springer's 
results and a correlation due to  Newman (1973). I n  both cases there is fair agreement 
with our asymptotic theory provided that P e  > 10-l. Of course the region P e  = O( 1)  
falls outside the range of any known theory, but the smooth transition from small to  
large P e  shown in figure 6 leaves little doubt as to  how to estimate N u  for any Pe. 

If the problem is such that the integrated dimensional heat flux Q from the strip 
is specified, as for a heated element, the temperature of the strip is given by 

(6.3) Tn = T, + ( @ / K )  {ng(e)  [ I +  ~ ~ E c I ( ~ ) I } - ~ ,  

where the sign of @ must be chosen appropriately, depending on whether To 5 T,. 

7. Temperature distribution far downstream in the wake 
The solution in the wake may be found from (2.11) and (3.8) when X-too.  When 

3 is large, the main contributions to the integral (3.8) result from small r .  To obtain 
a solution uniformly valid in P, we expand the integrand in a Taylor series as follows: 

Ai[e-fTir4( Y + r ) ]  z Ai(e-f"'rfY)+e-~"'r4Ai'(e-6"'r~Y)+ ..., 
Ai' ( e - f n f y t )  Ai' (0) + $e-fnfr$ Ail'' (0) + . . . . 

Substituting these results in (3.8) and retaining only the first-order terms, we find 

We now make the substitutions s = rX and 7 = Y / S *  and find 

The following identities, which have been obtained from Lebedev (1965, pp. I09 and 
137), must now be used: 

Ai(z) = &4[1-;((3-1+([)], [ = ?&, largzl < in, 

I,(<) = e-iUniJy([e:"f), -7r < argc in. 

When these results are substituted in (7.1) we find 

g(e) cos(Q7r) 76 
s-BS4(gs3rj%) e+ds. 

Ai'(0) 3 S% I 0 
T-l+--- 

If we now put s = u2 we obtain 

ufJ-$(au)  exp ( - u*) du, 
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Insulated tension 
1 2 3 4 5 6 7 8  9 bolts 

FIGURE 4. Experimental test section. Lengths of nickel electrodes (cm): (1) 0.000158; 
(2) 0.357; (3)  0.00250; (4) 0.008; (5) 0.0151; (6) 0.0517; (7) 0.0781; ( 8 )  0.169; (9) 0.547. 

which can be evaluated in closed form. From Gradshteyn & Ryzhik (1965, p. 717)  
we find 

(7 .3)  

We may compute the total flux from the plate by integrating the defect in flux crossing 
a line X = constant far downstream. Thus 

m 

Nu, = f ( 1 - T )  Y d Y  = ng(e), 
J O  

which is in agreement with the first-order result in (6.2). 

8. Experimental technique 
The theoretical results were verified by obtaining experimental data on niass- 

transfer to a liquid flowing in a horizontal tube using the well-known diffusion- 
controlled electrode or ‘limiting-current ’ technique (see, for example, Eisenberg, 
Tobias & Wilke 1954 ; Patel, McFeeley & Jolls 1975). Mass-transfer measurements 
offer advantages over heat-transfer measurements in that the Schmidt number for 
liquids is very large (in contrast to the Prandtl number), which justifies the assumption 
of a linear velocity profile within the thin concentration boundary layer. 

The experiments were performed in a flow loop (similar to  that of Patel et al. 1975) 
of PVC pipe (inside diameter 1.443cm) in which was placed the test section, con- 
sisting of nine nickel electrodes (see figure 4). The test section was located 175 pipe 
diameters from the entrance of the pipe, where a bundle of 26 Teflon tubes (14AWG, 
thin walled) served as a flow straightening section. I n  the range of tube Reynolds 
numbers used, the test section was located well beyond the laminar entrance region in 
the tube. The electrolyte solution was continuously circulated from a collection tank 
downstream of the test section to a constant-head tank and thence through the pipe 
t o  the test section. The solution was sparged with nitrogen and all liquid surfaces 
were kept under a nitrogen atmosphere to avoid dissolved oxygen, which can cause 
inaccurate results with the limiting-current method. The electrodes were mechanically 
and electrolytically cleaned from time to time to remove deposits and to  prevent 
poisoning of the electrode surfaces. 
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C bulk concentration (moles/l) 0.0086 to 0.01 
V kinematic viscosity (cm2/s) 1.11 x to 1.38 x lo-' 

Re tube Reynolds number 0.42 to 1500 
T temperature ("C) 20 to 30 

Pe PBclet number 1.11 x 10-4  to 5 x 106 
s c  Schmidt number 2650 to 2850 

TABLE 1. Ranges of experimental variables. 

The electrolyte consisted of an equimolar solution (approximately 0.01 M) of potas- 
sium ferrocyanide and potassium ferricyanide in de-ionized water with 2~ sodium 
hydroxide as a supporting electrolyte. A particular solution was used for about five 
days and then discarded; thus solution properties varied somewhat for each series of 
runs. Table 1 gives the ranges of the relevant physical properties and flow parameters 
for all the runs. 

A potential difference was imposed between one of the electrodes in the test section 
and a very large nickel electrode, immersed in the electrolyte upstream of the test 
section, which served as the anode. In  the limiting-current region, the concentration 
of ferricyanide ions a t  the surface of the test electrode was essentially zero and the 
current in the circuit (measured with a current-measuring amplifier) gave the mass- 
transfer rate of ferricyanide ions to the test electrode surface. The bulk concentration 
of ferricyanide ions was determined by titration. The velocity gradient a t  the wall 
could be calculated from the assumed parabolic velocity distribution and a measure- 
ment of the volumetric flow rate. 

The nine ring-shaped nickel electrodes were of various thicknesses and the inner edge 
of each ring was in contact with the electrolyte, thus presenting adifferent mass-transfer 
length in the flow direction. The advantage of such electrodes is that they are 
axisymmetric, and there will be no diffusion in the azimuthal direction. The effect of wall 
curvature could be neglected because of the very thin concentration boundary Iayer. 

Each of electrodes 2-9 was cut from nickel stock, insulated by being coated with a 
thin film of nylon, applied by electrostatic spraying, and separated from its neighbours 
by disks of lucite. Electrode 1 was the smallest and was prepared by a different and 
rather novel technique, to be described later. Rubber O-rings (not shown in figure 4) 
were used between all mating surfaces and the entire assembly was held together by 
insulated tension bolts. Great care was taken to make the inside of the test section as 
smooth as possible. 

Since low PBclet numbers were to be investigated, a very thin electrode was 
essential. We attempted to fabricate this electrode (electrode 1)  by using thin nickel 
foil in the same manner as for electrodes 2-9, but the material was too fragile to make 
a suitable electrode. The technique finally developed was to make a disk of Rexolite 
(a cross-linked polystyrene which is heat resistant) of the required shape with a hole 
in its centre of the same diameter as the internal diameter of the test section. A mating 
Teflon plug was also made and fitted into this hole. A film of nickel, a few Angstroms 
thick, was then vapour deposited on one of the flat surfaces of the disk. The Teflon 
plug prevented nickel from entering the centre hole. The original thin nickel layer was 
then built up in thickness by electrolytically depositing nickel on it with the plug 
still in place. When the plug was removed and the disk examined under a microscope, 
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it was found that the exposed edge of nickel was smooth and uniform. During vapour 
deposition the Rexolite experienced slight irreversible thermal expansion so it was 
necessary to increase slightly the internal diameters of the rest of the elements in the 
test section. The final internal diameter was 1.443 cm. 

Electrode 2 and 4-9 were first tested by comparing data taken with them a t  
large PMet  numbers ( >  1000) with the Leveque solution. Electrodes 1 and 3 
could not be tested in this way because sufficiently high PBclet numbers could not be 
achieved in our apparatus owing to  their small thicknesses and our limited liquid 
heads. Diffusion coefficients of the ferricyanide ion were obtained from the correlation 
of Gordon, Newman & Tobias (1966), which for the ionic concentrations used here is 

9pIT = 0.234 x 10-gcm2P/s OK, 

where 9 is the diffusion coefficient (analogous to K above), p is the viscosity of the 
electrolyte and T is the absolute temperature. It was found that electrodes 2 and 9 
(the two largest) gave results which differed from the Leveque solution by less than 
10 yo but the others gave transfer rates much lower than those predicted by the 
Leveque solution. After repeated cleaning, dismantling and re-assembly, remachining, 
etc. of the electrodes, the results were unchanged. It was concluded that the dis- 
crepancy arose either from inaccuracies in the thicknesses of the smaller electrodes or 
possibly because portions of the electrodes could be passive. The electrode lengths 
were therefore calibrated using the Leveque solution at  large PBclet numbers. This 
procedure was checked by making other runs at  different but large PBclet numbers 
to verify that the Leveque solution was obeyed. The agreement was excellent and 
justified the procedure used. 

Electrodes 1 and 3 were calibrated using data from the other electrodes at  lower 
PBclet numbers by an inverse method. By comparing the measured outputs of elec- 
trodes 1 and 3 with data from the others, their respective PBclet numbers were obtained 
and their lengths calculated. The procedure was checked using several runs and the 
agreement was excellent. The electrode lengths shown in figure 4 are the calibrated 
electrode lengths, rather than the measured lengths. 

Once the electrodes had been calibrated, Nusselt numbers for various PBclet 
numbers were obtained by varying the solution flow rate and using various electrodes. 
PBclet numbers as low as 1.15 x were achieved. It was difficult to obtain lower 
values because the low flow rates could not be carefully controlled. Nusselt and PBclet 
numbers were calcuIated from the formulae 

Nu, = I /ncDgF,  Pe = 32 WL2/nD3p9, 

where I is the limiting current, c is the bulk ferricyanide concentration, D is the pipe 
diameter, 9 is Faraday’s constant, W is the mass flow rate of electrolyte and p is the 
electrolyte density. The measurement error in the Nusselt number is estimated to be 
less than 6 yo and that in the PBclet number to be less than 7 yo. 

9. Discussion of results 
Experimental data points are displayed in figure 5 for Pe < 10. It is remarkable 

that the data fall so near the theoretical curve for Pe ,< 4 when the asymptotic theory 
on which it is based is valid for Pe 4 0. 
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FIGURE 5.  Theoretical overall heat-transfer rate Nu, ?is. Pe and 
experimental data points for < Pe < 10. 
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FIGURE G .  Overall lieat-transfer rate X u L  vs. Per for all investigators with experimental data 
for < Pe < 106. -- , present work and Leveque solution; - --, Newman; -.-, Springer; 
0, experimental points. 

To display the experimental data over a larger range of Pe, we have chosen Pet as 
the abscissa in figure 6. The agreement with the various theoretical curves over 8 
decades of the PBclet number is very good. Although a few of the data points for large 
values of Pe were used to calibrate the probe lengths (see 0 8), additional experimental 
points were obtained for large Pe and these agree very well with the Leveque solution. 
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I n  the region 4 < Pe < 400 the experimental points fall above values from Newman’s 
correlation and Springer’s results. Although this is not easily seen from figure 6, 
owing to  the scale used, Newman’s correlation is in better agreement with the data in 
this range. 

I n  conclusion, we have obtainedexcellent agreement between our asymptotic theory, 
which is valid for Pe --f 0 and which describes the steady heatlmass transfer from a 
strip in a uniform shear flow, and experimental data obtained from an experiment 
which covers a much larger range of PBclet numbers. From the results presented here 
and the work of others, it  is now possible to predict the Nusselt number for any value 
of the PBclet number. 

We hope to  apply these results to shear flows with a small time-periodic component 
when the PBclet number is small. It may also be possible to use the methods presented 
here to determine the heatlmass transfer to objects of different shapes placed in tt 
uniform shear flow. 

The authors are grateful for the support provided by the National Science Founda- 
tion under Grant ENG 75-20863. 
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